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The theory of tensors depending on one scalar argument can be called 

the theory of tensor curves. Below, we will give an account of some of 

the properties of such curves with a view to applying the results to 

the problems of continuous media (in particular, to the question of the 

relation between stresses and deformations in nonelastic solids). The 

treatment will be confined to only three-dimensional symmetric tensors 

of second order. For the sake of simplifying the formulas, the com- 

ponents of the tensors are given in orthogonal Cartesian systems of CO- 

ordinates. 

1. Three-dimensional, symmetric tensor of second degree 
as an element of a six-dimensional space. Let us consider the 

manifold of three-dimensional symuetric tensors of second order 

Tij = Tii (1.1) 

It forms a six-dimensional, linear, metric space in which the scalar 

product of its elements A and R is defined by the equation 

(AB) = AijBij (4.2) 

‘Ihe norm is formed from the scalar product, i.e. 

11 A [I = v&G (1.3) 
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and the distance between the points is equal to 

P (AB) = v(Aij - B+j) (Aij - B<j) ($4 

Apart from this, the elements of F-1, are subject to the condition 

AikBkj $- BikAkj C!!! Ha (1.5) 

which follows from the rule for multiplication of tensors (and coincides 

with the rule for multiplication of matrices). 

If we did not have this last requirement, we could have enumerated 

the components of an arbitrary tensor in any order, e.g. 

T,, = T,, T,, = 7's, T,, = T,, ‘I/iT,, = T, 

J@T,, = T,, vg T,, = T, (W 

and then treat the Tj as components of a vector in a six-dimensional 

Euclidean space. However, condition (1.5) excludes this possibility and 

compels us to treat H6 as a special type of space (the space of sym- 

metric tensors of second order), the basic properties of which will be 

dealt with in the first four sections of the paper. 

'Ibat H6 is six-dimensional follows from the fact that any three- 

dimensional symmetric tensor of the second order can be represented in 

the form (see, for example, [ll) 

where h.tm) are six arbitrarily chosen, linearly independent, three- 

dimensiiial tensors of the second order, and t(,) are six invariant co- 

efficients. We will call expression (1.7) the expansion of Tij in the 

tensor basis h.‘.“‘, and t 
11 

(,,,) the components of Tij along the tensors of 

this basis. 

'Ihe determination of t(,) for given Tij and h.!"" leads, in general, 
‘.I 

to the solution of a system of six linear, algebraic equations with six 

unknowns. However, this problem is greatly simplified if the basis 

h-f”’ is orthogonal, i.e. if 
1.l 

hip h. w = fj 
{ 

1 (m = n) 
13 mn = 

0 (m#n) (W 

In this case the tflAj can be determined directly from the formulas 

t(,,> = Tijhi)m’ tw 

It is obvious that any six symmetric, mutually orthogonal tensors of 
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second degree are linearly independent, i.e. they form a basis. In fact, 

by ~ltiplying the expression 

6 

2 CL(m) hp = 0 (1 .lO) 
m=1 

scalarly by all the hii tn) (consecutively), we obtain a(=) = 0. It is 

also clear that there IS no non-zero tensor orthogonal to all the basic 

tensors. This follows from (l-o), according to which all the components 

of a tensor that is orthogonal to the basic tensors are zero. Hence- 

forth, we will assume that the basic tensors have been orthonormalized 

(provided no mention is made to the contrary). 

Let us consider, along with h,.$l), another basis h~.(mf, and repre- . . 
sent its tensors in the form of i; 

the first basis (and vice versa) 

expansion in terms*Af the tensors of 

(1.11) 

From (1.8) and its analogous expression 

it follows that 

!I a 

(1.13) 
k==l k=l 

i.e. the coefficients AC,,,) have the same properties as the cosines of 

the angles between the axes of two mutually orthogonal Cartesian co- 

ordinate systems in a six-dimensional Euclidean space. 

Since 

the expansion of a unit tensor in terms of tensors of an arbitrary 

orthonormal basis has the form 

t&j = i (h,) hi!*) (1.15) 

m=1 

~ltiplying this identity scalarly by Sij, we find 

6 

2 (M2 = 3 (1.16) 

m=1 
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This relation connects the linear invariants of the tensors of an 

orthonormal basis and enables us to express one of them in terms of the 
other five. 

Ve raise the first of the identities (1.11) to the second power (in 

the tensor sense). Then we will have 

%mmi.ng (1.17) over all m and taking (1.13) into account, we obtain 

i h$@@'u = =$ h~~(~)~~~~) = Cij (1.18) 

??l=l ?ll=r 

where C.. 
t.7 

is a constant symmetric tensor of second order, equal for all 

orthonormal tensor bases. In view of the isotropic nature of a three- 

dimensional Euclidean space (in it, there are no preferred directions), 

the present tensor can be none other than isotropic, i.e. 

Cij = C 6ij (1.19) 

By substituting (1.19) into (1.18) and contracting the indices i, j 

(on account of the fact that the basic tensors have been normed), we 

find that the invariant coefficient is C = 2. &IS, finally 

Formulas (1.20) and (1.16) express the basic tensor and basic vector 

properties of orthonormal tensor bases. By making use of them, it is 

possible to express any one of the basic tensors in terms of the re- 

maining five and the unit tensor 6 ij. 

h fact, let five orthonormal tensors hijm) (n = 1, 2, 3, 4, 5) be 

prescribed. Then. by virtue of (1.20) one can write 

hi, h,$ = iDij (1.21) 

where hij = hij(63 is the required sixth basic tensor, and 

5 
@‘ij =2aij - 2 h$Q hk’i”‘, Q= ((D) =I 

(1.22) 

is a known vector. We raise identity (1.21) 

hikhk,h,,hh,j = @Dik@kj 

and, in order to transform this, use can be 

to the second power 

(1.23) 

made of the Hamilton-Cayley 
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theorem, according to which (see, for example, 12, p. 108~) (1.24) 

fr*&,phpqhqj= f@ [+(la)*-+ (h) + %fh8)1 8ij + $ [fW - fhl'f 'ij + $[i + (h.Plhi&j 

where 

(h) - hii, (ha) = hiihdi = 1, (h3) = hd%jk~i (1.25) 

l3y substituting (1.24) into (1.23) and calculating (1.21), we find 
(1.26) 

[(h’) - (h)*l hii = 3@f/+@D,i- ?j 11 $- (h)al ai/- (h) [f (h)*-:(h) + (h’)] 8i/ 

Here we have introduced the first invariant h ii = (h), which apart 
from sign, can be determined froa equation (1.16). Similarly, with 
regard to the invariant (h3); after multiplying (1.26) scalarly bs sij, 
we obtain the following expression in terms of known quantities: 

(h3) = $ &[(W) - f + (h)z - -+- (h)‘] (1.27) 

By the same token, formula (1.26) can be regarded as the definition 
(to within the sign) 0: the tensor hij in terms of the five prescribed 
orthonormal tensors h. .a . 

‘I 

An exceptional case arises when, in accordance with (1.16). it turns 
out that ( h) = 0. Then (1.26) assumes the form 

(h3) hif = 3@,(b,,. - $ @‘ii (1.28) 

and one must argue somewhat differently. 

By multiplying equations (1.21) and (1.28) together scalarly, we have 

(h*)a = 3 ((I@)‘--- iz_ (@*) = 3 [(a’) - f] (1.29) 

In the particular case when hij happens to be a deviator, by intro- 
ducing the preceding expression for (h3) into (1.29). we are led to the 
formula determining hi j in terms of the given tensors 

(1.30) 

It was proved in 231 that the invariants DijDij = (D’) and 
D. D .D. 

tk k] tj 
equality 

= (D3) of an arbitrary deviator Dij are subject to the in- 

(1.31) 

Hence, since it follows from (1.26) that (a’) = l/2 when (h) = 0. it 
is possible to infer that 
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and, consequently, Lhce radical oocurrfng in (1.30) is always real, Thus, 
the problem of finding the normalized tensor orthagonal to five ortho- 
normalized tensors alw2qs has a soluGfon, 

2% an tk..! subspaees is H,, 
normal basis h .fal 

Starting from an arbitrary, ortfio- 
it is possible to select two mutually orthogonal 

subspacea H,, an ‘d Hi-n from H,. To the first will be assigned all tensors 
representable in the f’orm 

and to the second all tensors representable in the form 

The tensors h.fSf f~t<n) form an ~rthono~a~ basis in Hnt and the 
tensors h.!"' (IS'$S~. + 1) form an orthonormaf basis in ff6_,. 

'I 

'Ihe transformation of one of the orthonormal bases into the ather in 

rr, and HG_, can be effected by the rFormulas 

where ths coefficients A{;fih,, ALi) 

R 

p@ - 
3 -4 X($$) a$f 

k=mS_l 

are subject ta the equalitiea 

Of course, it is possible to divide H5 into it larger numErt3t: of 
mntnaily ortfrogoziaf subspaces, Moreover, an arbitrary element Of H6 can 

be represented in the form of a sum of efements belonging to mutuaffy 
orthogonal subspaces, all of which are six-dimensional. Let us examine 

the properties of certain subspaces, 

2.1. "Xrze deviatoric subspace D5. We choose the coefficients h,, of 
the tra~sfu~atio~ in (T.lf) as 
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‘&en, according to (1.15) and (1.16) 

h .‘: (6) 
13 = hi; = &. dii z &j*) (2.6) 

i.e. the sixth tensor of the basis hi;(“) will be the normalized, iso- 
tropic tensor 

&!*‘&!*‘= 
23 13 

1 t iQ”’ = V$ (2.7) 

‘Ihe remaining five tensors kiln) = hi;(‘) (r/t = 1, 2, 3, 4, 5), in 
view of the conditions 

diifm) &j*) = difmf (jij = diim) z 0 

turn out to be deviators. 

By making use of the tensors dijm), 6. ., it is possible to split H6 
into two mutually orthogonal subspaces: t e one-dimensional one Eij “h (‘1 

(the space of isotropic tensors) and the five-dimensional one D,, all 
the tensors of which are deviators. 

Hence, it follows that an arbitrary deviator can be represented in 
the form 

where d .!IR) are five orthonormal deviators. lhe six-dimensional basis 

gij”” *Jdijm) is subject to condition (1.20) and, consequently 

i &km) dk(j@ =: _$ aij (2.9) 
m==I 

This formula allows us to express any one of the five orthonormal 
deviators (for example, d.!” = d. -) i n t erms of the other four and Sij 
The corresponding calculaifons ha% already been given at the end of 
the preceding section. They lead to formula (1.301, in which, for the 
present case, (Dij must be understood to mean 

Dij = $ aii _ -+j) di,jm) &irn’ 

m--l 

(2.10) 

It should be emphasized that the five-dimensional space D5 of de- 
viators has nothing in common with the five-dimensional vector space 
considered in the works [4,51 and others. 

In the cited works on the Cartesian axes of a five-dimensional space 
certain linear combinations of the components of tensors in a Cartesian 
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system of coordinates of a three-dimensional space were set aside. These 
linear combinations can then be interpreted as the components of five- 
dimensional vectors. However, the latter leads to the fact that the 
operations in a five-dimensional space lose invariant character and, as 
a rule, have meaning only when definite systems of coordinates are 
simultaneously fixed in both the three- and five-dimensional spaces. The 
latter is also obvious from the formulation of Theorem 1 in [41. For de- 
tails, see Es-91, 

2.2. The! subspace of deviators Iraving a apron principal direction. 

Tensors 9. . CE Zf6 are called axisymmetric, if t'wo of their principal 
values arl'equal. If such a tensor is fully determined by only one of 

its principal directions, this will be called its axis. 

If a normal deviator is axisyanaetric, it will be subject to the con- 

dition 

(2.11) 

where the upper sign relates to the case when 9.. is a deviator of the 

tensile type, and the lower sign when Q.. is a $mpressive type. Formula 

(2.11) can be verified by carrying it 0% to the principal axes of Qij 

and taking into consideration that 

in,= + v;, 52, = 51, = f + (2.12) 

Henceforth, for the sake of definiteness, the symbol Qij will denote 

a normalized deviator of the compressive type. It follows from (2.11) 

that for such deviators 

(2.13) 

If c;; is an arbitrary normalized deviator, it can be connected with 

Q. ., 

Oh. 

thzaxis of which coincides with 

si, by the formula 

one of the principal directions 

where c is the principal value of Cii 

+ Gil, ckj - f 6ij I 
corresponding to the axis of 51;;. 

Equation (2.14) can be verified by referring it to the principal axes' 

(2.14) 

of cij. 

It follows from (2.14) that, if two normed deviators cijl) and cij2) 

have one comn principal direction, the following relation will sub- 

sist between them: 
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1 (1) 
Cl2 - l/a 

clcij 
(1) (1) 

t Cik ckj - $6ij 
I 

(2.15) 

where cl and c2 are the principal values of c ;J1 ) and c . ! 2 ) correspond- 

ing to their common principal direction. 
Ll 

We will elucidate the conditions of orthonormality of the deviators 

c.(l) and c.. . (2) The table of direction cosines between their principal 

ai& has thi’ form: 

Here, y12 is the angle between the 

principal axes cil) and c\‘). Hence, 

the components of the tensor cij2) in 

the principal axes of cii2) can be ex- 

pressed by the formulas 

1 Cl@) 1 c,(2) 1 c,(2) = ca 

Cl(l) I COST1a sin TIS 0 

c,@’ 
I 

-sin r12 
I 

cos-lh 
I 

0 

c3(lk Cl 0 
I 

0 I 1 

(2) = 
Cl1 

c (2) 
1 cos2 y12 + c2(2' sinay12 (2.16) 

c (2) _ 
Cl 

(2) 
22 - sin2 71~ + c2 (2) 

cos2r1* (2.17) 

c33 
(2) = c3@) = $ 

Ry subjecting (2.17) to the requirement cil” c;j2’ = 0, we are led 

to the formula 

cos 2~,, = - ala2 
i 

ak = 1/3 Cl 
(k) + $0 

C,W) _ @) 
(2.18) 

If c.!1) and cij2) 
'I 

are normalized, then 

(2.19) 

As is obvious from (2.18), there is an infinity of normalized de- 
viators c .f2) which have the one principal direction in comnon with the 

given no&Llized deviator c.(l) and which are orthogonal to it. We will 

consider an arbitrary pair o ‘# such tensors and try to select yet another 

normalized deviator, which is orthogonal to them and has with them a 

cornnOn principal direction. Then, besides (2.18) we will also have two 

analogous equations 

cos 2y,, = - a1a3, cos 2y2, = - a2a3 h23 = -fl3 - r13) (2.20) 

By making use of (2.18) and (2.20), we obtain 

al”aI” + a12a3” + a2”a3” = l-2 a12a22a32 (2.21) 
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Hence 

Q3 = f v- 1 - a12a22 

ala + aa + 2a12az2 
(2.22) 

From (2.18) and (2.19), it follows that a change of sign in front of 
a3 is equivalent to a change of sign in front of cit3). By the 
token, it turns out that to each pair of orthonorma i deviators z:‘) 
c .t2) having a common principal direction there corresponds a uni’$ue’ 

LJ 
(to within sign) deviator ci j (3) which is orthogonal to them both. From 
the account, it also follows that in an arbitrary deviatoric basis dij”), 
no more than three of its tensors can have a comaon principal direction. 

Concerning the manifold D3 
direction with Q. f’) 

(‘) of deviators having a common principal 

LJ ’ 
the following statements are valid: 

a) an arbitrary linear combination of such deviators c 
ij E '3*t 

b) any four deviators, having a comnon principal direction are 
1 inearly dependent, 

c) an arbitrary cij E D,* is representable in the form 

C*j = i C(e) Cij@ 

m=1 
(2.23) 

where c +!s) are three orthonormal deviators from D,*, 
‘I 

d) from (a), (b) and (c) it follows that each manifold n3* is a 
three-dimensional subspace of D, in ff6, 

e) to every axisymnetric deviator Qij a certain D,* can be associated, 

f) to its elements will belong all deviators having a conrnon principal 
axis which coincides with the axid’of Q*ij(Q*), 

g) an arbitrary synrnetric tensor of second order is formed by means 
of some linear c~ination of the elements of D3*, since, for example 

c$jftf c/J ) , &) # + Q @p, c$’ c,$’ c$’ + cp c*fplf cpy, . . . (2.24} 

has principal direction coinciding with that of Q*. 

The transformation of one orthonormal basis c:!“’ into another 
c’. .(m) 

"J 
is accomplished by means 

“VW _ 
Cij - i ?qmn, cp 

7%=1 

From f2.25), it follows that 

of the formula 
LJ 

( -j$ hti hnK = i hknz hkn = &m) (2.25) 
k-l k=l 
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(2.26) 

where A. . 
format& 

is a tensor, which remains invariant under arbitrary trans- 

(2.25) into the corresponding D,*. 

By means of elementary calculations it is possible to establish that 

every shear deviator Sij (i.e. a tensor with the principal values 

S, = - S,, S, = 0) is orthogonal to an axiqmnetric tensor Q.., if the 

axis of the latter is perpendicular to the plane of shear. Oi'the other 

hand, by virtue of (2.18)‘ two shear deviators Sijl), S.t2' (with the 

same shear plane) are orthogonal, if the angle between t eir principal "h . 
directions y12 = w/4. Hence, the simplest class of orthogonal deviators, 

having a principal direction in common with Q*, is Qi .* and two mutually 

orthogonal deviators of the shear type S,.; (l), S;$2) the plane of shear 

of which is perpendicular to Q*. BymakiZg use o!k this most 

it is possible to determine A... 
2’ 

simple basis, 

In this respect it should be noted that, according to (2 

SiF'Sk$i' -~~ij~~i~~'~~'-~$ij-_- A_"? 

E%y setting in (2.27) 

$) = Q.." 13 9 Cij (2) = sip, @f = &fz) 

we find 

14) 

(2.27) 

(2.28) 

(2.29) Aij= 6,j- G _L$Jij* 

We represent Q*ij in the form of an expansion in terms of the basic 
deviators CT.!") 

1’ 

Q(,) = 6-2; cp (2.30) 
m=l 

However, in agreement with (2.14) 

I/c St@@ = a* ‘, Icm + (c7831 
c,- 6 

(2.31) 

On the basis of the Hamilton-Cayley theorem 

c& +cm+ $(cm3) 

Hence 

(2.32) 

%n) = 1/“7i cm (2.33) 
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i3y the same token 

A consequence of the present formula is the equation 

(2.34) 

(2.35) 

ny substituting (2.34) into (2,291, and then (2.29) into (2.261, we 
obtain the equation 

(2.36) 

connecting the three orthonormal deviators having a common principal 
direction. This equation (together with (2.35)) enables us to express 
one of these deviators in terms of the two others and Eij (to within 
the sign). 

However, we will not dwell on this, in as far as the analogous ex- 
pressions were proved in Section 1. 

2.3. &Asp~e of cuuxial deviators. If two deviators aij, bij are co- 
axial, then, as is well known, they are connected by the equation 

(2.37) 

where A,, A, are scalar coefficients which can be expressed in terms of 
the invariants of the deviators of aij, bij (see, for example, [31 ). 

By taking into account that oij and b, j are normalized and mutually 
orthogonal, we obtain 

where 

(2.38) 

Sk 7 = 66 (g3) = I/s &k akj aij (2.39) 

We note that inequality (1.32) is valid for an arbitrary deviator 
and, consequently, for a normalized deviator 

- 1 < Vf/6 (a”) < 1 (2.40) 

l3y the same token, to every normalized deviator a. . there corresponds 
a unique (to within sign), coaxial, normal, normalize deviator bii. An “ii 

exception case arises when 
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siny= -&rt:, (a”) = f & (2.41) 

In addition, aij can turn out to be an axisymmetric deviator and be 

subject to equality (2.11), in view of which the right-hand side of 

12.33) becomes indeterminate of the form O/O. 'lhis indeterminacy cannot 

be removed. 'Ihe fact is that in this case there is an infinity of 

deviators coaxial with and orthogonal to aij. 

Ihey will all be deviators of the shearing type in which the shear 

plane is perpendicular to the axis of aij (see 2.2). However, an arbi- 

trary pair of such deviators will not be coaxial to each other. 'lhere- 

fore, even though in the present case there is freedom of choice of the 

normalized deviator coaxial and normal to aij, the assertion that there 

are no third mutually orthogonal, normalized, coaxial deviators however 

remains in force. 

With respect to the set D,* of coaxial deviators we have the follow- 

ing assertions: 

1) tb arbitrary linear combination of such vectors Aij E L$*. 

2) An arbitrary multiplicative tensor, which has been formed from 

such deviators, is a coaxial element of D,*. 

3) Each D,* is a two-dimensional subspace in R6 and D5, and the pre- 

sent D,* belongs to such a subspace in an arbitrary D,*, in which R* 

corresponds to one of the principal directions of the deviators. 

3. On the number of tensors sufficient for the formulation 
of a basis in 8,. A basis in if, consists of six linearly independent, 
syrmnetric tensors of second degree. However, a nonlinear dependence be- 

tween the base tensors is not excluded. In this connection, the question 

arises as to the smallest number of tensors sufficient for the formation 

of the basis. In passing, we will also touch on the question of the 

formation of tensor bases from vectors. 

3.1. Dyadic bases. We will consider the set A of three-dimensional 

symnetric tensors of second order, having the form 

gij = 3i ej + 3j ei (3.1) 

where si, and ei are two arbitrary three-dimensional vectors. 'lhe in- 

variants gii can be expressed in terms of the invariant vectors si, and 

e; in the following manner: 

gii = (g) = 23e cos 9, &ii gij = (g") = 298 (1 + COS2(p) 

gi~gk~gi~ = (8) r;: 2s3eS(3 + COS' 'p)COSq 

(3.2) 
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3= pGi3f, e = I/e=, 
ai ei 

cos cp = ---&- (3.3) 

From (3.2) it follows that in the form (3.1) only such symmetric 
tensors of second order can be represented, in which the invariants are 

subject to the relation 

2 (&Is) = lg) t3 (!_I") - Wl (3.41 

fBy setting here (g) = 0, we obtain (g3) = 0, i.e. from the whole set 

of deviators, it is only the tensors of the shear type that can be re- 

presented in the given form (3.1). Isotropic tensors cannot be expressed 

in the form (3.1). 

The set A, being a particular set of elements occurring in the space 

H (1) 6, is not one of its subspaces because gij t d.t2) is not an element 

of A in general. 
‘I 

By taking three mutually orthogonal unit vectors a(l), ac2), 3@), it 

is possible to form from them six symmetric tensors of second order 

g,C.W = ~j(~)3~(~), g’.a”W _= 
23 v 

.+ [3p)3p + 3,(9fgq (3.5) 

where a, p, Q assume the values 1, 2, 3, and also m f p f q. 

!3y referring the tensors (3.5) to axes with the directions of a(i), 

$2) and 0 , it is easily established that 

(3.6) 

i.e. the tensors (3.5) form an orthonormal dyadic basis in H6. ‘Ihe com- 
ponents of an arbitrary T E H6 with respect to the tensors of such a 

basis are equal to 

(3.7) 

where T. . are components of the tensor T in Cartesian coordinates, the 
axes of'ihich coincide with a(r) , ~$2) and a(3) . If a@') are not ortho- 

gonal, then we lose the mutual orthogonality of gitk) in (3.5). Never- 

theless, in this case also they remain linearly in ependent ;5. (under the 

condition that 0') are not coplanar) and can be used as six basic 

tensors. 

In [ll, tensors of arbitrary order are successively represented in 

the form of expansions in multiplicative tensors which have been formed 

fro&l the basic vectors (in particular, in dyads if attention is directed 

to second order tensors), and also use is made of both orthogonal and 
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nonorthogonal bases. This representation is very convenient for differ- 
entiated tensors referred to a fixed system of coordinates. 

3.2. Bases formed from multiplicative tensors of the second order. 

It is obvious that it is impossible to construct a basis in 11, having 

in all only one syrtvnetric tensor a ij. Of course, from this tensor it is 

possible to construct a unique, symnetrlc tensor aikakj, which is 

generally linearly independent of it. Every other multiplicative tensor, 
as, for example, aikakpapj, a;kakpappaqj, . . . . in view of the Hamilton- 

Cayley formula, can be expressed xn terms of Si., aij, 

fore, the n~er of tensors sufficient for the f 
‘ik’kj* lhere- 

ormation of a basis can- 

not be more than two. 

We will elucidate the sufficiency of this number. 

Let aij, bij be two linearly independent tensors. It is possible to 

construct from them the following six symmetric tensors: 

aikakj, bikbkjr aikbkj $_ bikakj, aikak&,j -f hkakpapj 

hhpcLpj + Qkbkpbpj, aikfJkpbp&,j -I- hkbk#pqaq 
(3.8) 

Al.1 other multiplicative, symmetric tensors of the second order will 

be expressible in terms of the nine tensors Eij, nij, bij and (3.8) on 

the basis of the F~~ilton-~yley theorem generalized to the case of two 

tensors tlO1. And what is more, it is possible to assert that between 

the above-mentioned nine tensors there are always n linear relations, 

where n is not less than 3 because the above nine tensors are elements 

of H6. 

It is clear that when n 3 3 it is not possible to form a basis from 

these nine tensors, because among them there would not be six linearly 

independent ones. It is not difficult to quote examples corresponding 

to this case. In particular, 

direction R*, 

if aij and bij have a comnon principal 

then all symmetric tensors formed from them will have this 

very same principal direction. They will belong to the four-dimensional 

subspace B3*, Eij, and, consequently, each five of them will be linearly 

dependent (Section 2). 

l3y the same token, even if one of the principal directions of aij 

and bij should coincide, we cannot construct a tensor basis from them. 

And what is more, this is impossible even if three such tensors are 

given. If, however, aij and b.. do not have a comnon principal direc- 

tion, then, as was proved in H 3 1 , the coefficients in the expression 

Tij = a& $_ a&j i- a&j -f %&kakj d- a&v&j -f- 
+ @5 (aikbkj $_ b&&j) + %g (u~kuk~b~j f b~kak~a~j) + 

f h (b~kbk*a~j f a~kbk~~j) cw 
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can all be chosen so as to satisfy equation (3.9) for an arbitrary 

tensor Tij* 

?he last statement is equivalent to the assertion that, in the case 
considered, among the nine tensors 6 .., a.., b.. (3.8) there are six 

linearly independent ones, from whiciJcan'Le fZmed a basis in H6. 

From the foregoing we draw the two conclusions: 

1) For the construction of a basis in H6 it is sufficient to have 

three three-dimensional vectors, provided they are not coplanar. 

2) For the construction of a basis in H6 it is sufficient to have two 

three-dimensional synrnetric tensors of second order, provided they do 

not have a common principal direction. 

4. Generalization of Serret-Frenet formulas. We will con- 
sider the tensor R 

parameter h. 

ij E H, which is a function of the single scalar 

Ihe derivative 

(4.1) 

will not be a normalized tensor in general. However, if we change over 

to the new argument 

then the tensor 

(4.3) 

will prove to be normalized. 

We will call argument s chosen in the above manner the len#zh of the 

tensor curve R-. and r .tl) 8 will denote the normalized tangent tensor 

to it. Now we &m the &owing sequence of recurrence relations: 

In each of these there appears one tensor and one scalar coefficient 

that were not in the preceding formulas. By the same token, formulas 

(4.4) will determine the tensors r $' (K>Z) in terms of the tensor 
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r.(l) prescribed by formula (4.3). 
ZJ 

hs far as the scalar coefficients K~ are concerned, they will be 

chosen so that all the successive tensors are normalized. In this con- 

nection, we will prove that 

p (.m)J- w irz 6 
i.v ij nan (4.5) 

i.e. that r.tn) 
El 

are not only normalized but also mutually orthogonal. 

In fact, by multiplying the first of formulas (4.4) scalarly by 
p.!l) 

‘J 
, we obtain 

rj>) dr,f) 
al - = xd& ij aj ds 

1 d (r f1)t.y = 0 = “Ir$‘T.$’ (4.6) 

Hence, if K~ f 0, we have 

'.$$$a) = 0 (4.7) 

Now we multiply the second of formulas (4.4) scalarly by rijl), and 

also by rii2). Then we will have 

- X1 = - X1 f &F$)F$) (4.8) 

Hence, if K* f 0, we have 

r$‘F$’ = l;f2)r.$) Y 0 (4.10) 

Ry completely analogous arguments, we are led to the conclusion that 

all the tensors in (4.4) are mutually orthogonal. But then the given 

sequence of formulas cannot be continued indefinitely; from the fact 

that there are no more than six mutually orthogonal, symmetric tensors 

of the second order, it follows that the sequence must terminate not 

later than the sixth formula, i.e. K~ = 0 (although, in certain cases, 

it can terminate earlier). 

Thus, for an arbitrary tensor 

relations: 

dri’j’) dr!?) 
- = xlrg) , 

ds -fib-=- 
X1$) 

curve in H6, we have the following 

(4.11) 

drx) 
+ $y$), - 

ds =- 
X,F$) + 3CJ$’ 

dr j?f 
-2&-=_ 

dr.@) 
X,Fi!p” + 3c,rp, -2- = - X*ri’jQ) + x,ri’j”) , 

&.!pf 

ds 
+-=- X5?$’ 

which constitute a generalization of the Serret-Frenet formulas. They 

permit the determination, for each tensor curve Rij(s), of a natural 
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reference frame r.tm), i e 

point of the curvi! 

. ‘ the set of six orthonormal 

If the parameters 

&t = % (s) (m = 1, 2. 3, 4, 5) 

tensors at each 

(4.12) 

of a curvilinear tensor curve are prescribed, then (4.11) becomes a 

system of six linear, ordinary differential equations, the unknowns in 

which are the tensors rij (“‘). Their general solution can be written down 

in the form 

‘.p = i C$‘f(,) (4.13) 
n=1 

where C.tnt are six constant tensors playing the role of constants of 

integrai!on, and the thirty six scalar functions ftnnj of the s argument 

are arbitrarily chosen in the form of a particular solution of the 

following six systems of equations: 

df(ln) - %f(wl), dfJffm) -_ 
ds - = - Xlf(lY2) + ~Zf(wl) ds 

df(Jn) df (4n) 
ds=- 

%j(wq + %f(4?l)l - = - ds %fGln, + X4fmq 

"lf(W Q@=nf 
ds =- %f(4n) + x6f(6~)7 ~ = - ~6~(6~) ds 

(4.14) 

If the particular solutions fcnnj of system (4.14) are chosen so as 

to satisfy the initial conditions 

f 6 (rn?l) = mn when s = 0 (4.15) 

then it turns out that 

(4.16) 

By the same token, when the ftm,,) are chosen as above, the tensor 
constants C.'.m) 

13 
will form an orthogonal basis coinciding with the 

"natural reference frame" of the tensor curve at the point s = 0. 

Formulas (4.U) in the present case can be treated as the transforma- 

tion of this constant basis into the "natural reference frame", formed 

at an arbitrary point s. 

In agreement with the above choice of initial values for fcmnj, we 

have 

i f(mk) f(nk) = i fW) f(W = ‘mn 
k=l k=l 

(4.17) 
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As has already been mentioned, sequence (4.4) can terminate 
the sixth formula. 

1237 

before 

For example, if Rij( s) is a deviator, all the r.!“) will also be 
deviators. Then sequence (4.4) must terminate no l:Cer than at the fifth 
formula, becuase there are no more than five orthonormal deviations 
(Section 2). Thus, for deviator curves (which will be of greatest im- 
portance later on) we always have K~ = 0, i.e. they are a particular 
form of five-dimensional tensor curves belonging to the subspace f15. If 
R. .(.s) is not only a deviator but also retains one of the principal 
dii!ections ST* when it otherwise varies, then sequence (4.4) must termi- 
nate at the third formula (i.e. K~ = 0). ‘Ibis follows from the fact that 
there are no more than three orthonormal deviators having a cornnon 
principal direction (Section 2). Consequently, tensor curves of this 
class will be particular forms of three-dimensional tensor curves. If 
all three principal directions of the deviator Rij(s) remain fixed 
during the variation of the deviator Rij( s), then (4.4) terminates at 
the second formula, since there are no more than two coaxial, ortho- 
normal deviators. In this case K~ = 0, and Rij(s) will be a particular 
form of “plane” (two-dimensional) tensor curves. 

l[lte resemblance of the theory of tensor curves to the theory of 
vector curves is obvious. However, there are also some differences be- 
tween these theories. For example, the Serret-Frenet formulas for three- 
dimensional vector curves in the general case do not have a general 
integral, whereas equations (4.11) are always amenable to quadrature. 
Their general integral is expressed by 

wht;f can{:: obtained b tensor RdtipliGatiOn of equations (4.11) by 
‘ij , Fij I **.I r .(d respectively, and by then sunrning all the 
equations. The nece&ty’of the existence of the integral (4.18) is a 
consequence of (1.20). 

5. Some applications to the question of the connection 
between stresses and deformations in nonelastic solids. In 
physics, problems often arise in connection with the establishment of 
relations between vector or tensor curves. lhe classical example is 
Newton’s second law of mechanics, which can be treated as an isotropic 
connection between the vector curve r(t) (the trajectory of a material 
point) and another vector curve F(t) (the force). 

The form of laws of this type is always subject to limitations of a 
geometric character, which are called forth by the finite dimension- 
ality of the space. ‘Y&us, for example, independent of any sort of 



be a funcCian of any invariants of the derivative8 csf vector J?, apart 
from those containing i, If in addition it is demanded that tba integral 
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From this example it is clear that tfre role of the geometrical con- 
siderations in establishing the connection between vector curves (and, 
consequently, between tensor curves) is not to be exaggerated. A de- 
cisive role is obviously played by the considerations based on an 
analysis of the physics of the phenomena under consideration. 

Nevertheless, certsin benefit can also be derived from a preliminary 
investigation of the geometrical aspect of the problem. 

We will consider the connection between the stress tensor o.. and 
the strain tensor "ij in a nonelastic solid, i.e. basically thi' 

question of the formulation of the constitutive equations for such 

solids. In contrast to the elastic body, in the present case there is 

no single-valued relation between CT.. and ~~~ at each instant of time 

However (if the temperature distribkon of the process of deformation 

t. 

is fixed by assuming, for example, that it is isotropic) it is possible 

to assert that the tensor curve u iitt) uniquely determines the tensor 

curve Eij(t). In this connection, it will be assumed that at the initial 
instant t = 0 the body is undeformed (Eij(O) = 0) and free from stress 

fo,j(o) = 01, Moreover, we will consider the body to be initially iso- 

tropic, by assuming that in the constitutive equations of the material 

there appear no other tensors than uij, Eij and their time derivatives. 

We will represent E.. and uij in the form 
'I 

e ij = 8iti; + $ e&j = E&j -+- f e&j 

0. 

tj 

= Ui; + $CiGij = SSij + f66#,j (5.6) 

e = Cii' Q = oii, E = vex,- s=Jq$ (5.7) 

where E' ij and o!. 
21 

are the deviators of the stress and strain tensors, 

and the normalized tensors o<j and s ij are determined by the formulas 
I I 

‘ij 
3ij =- 

Qi j 
8' 

&?ij 2_1 - 

s 

6.8) 

Expressions (5.6) represent the tensor curves E. .fr) and cr..(%) in 

terms of their projections on the Cartesian space ;I"5 and the Aieie- 

dimensional space 6. . . Let the quantities a..ft> = 3.!“ft), E(t) and 

e(t) be prescribed, 'ihich, by virtue of (5.df and (5:$), is equivalent 

to prescribing E ij(t). 

By following the preceding section, we can write 
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where 3 .!“) are five deviators which form an orthonormal basis in iIs 
‘I 

and are a “natural reference frame” for the tensor curve 

Rij (t) = \ 3p dt (5.10) 
0 

We will represent the stress deviator uij in the form of an expansion 
in the given reference frame 

(5.11) 

Since the body is regarded as initially isotropic, the coefficients 
in this expansion must be functions (or functionals) only of the in- 
variants of the tensors sij and aij and of their time derivatives. 

‘Ihe deviator a. fin) can be expressed in terms of E! and the first of 
its four time derl(atives, Therefore, (5.11) can be l%ought into the 
form 

4 
dme.: 

Qi; = 22 Am,* (5.12) 
WI==0 

where f(a), as also SCml are functions (or functionals) of the in- 
variants of the tensors oij, a. . and their derivatives. 

51 

Such, on the face of it, is the most general form of the relations 
between the stresses and deformations in an initially isotropic body. 
However, it is easy to quote examples which indicate the insufficient 
generality of (5.12). We will now consider the case of the one-dimen- 
sional deformation 

‘Ihis simplest deformation is characterized by a single deviator 
3.t'). However, from it we can in general construct yet another linearly 

%.I 
independent deviator 

Therefore, the tensor 
in the present case must 

3pg - 1/&. 
23 

structure of the stress-deformation relations 
have the form 

a,; = F&” + F, [3Jjb&!‘) - l/a &.I = f& + f, Is& - V,E$l Y (5.14) 

where fl and fi depend on the invariants E, e, their time derivatives 
and the third invariant of the deviator .eij. 
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On the other hand, for this same case expression (5.12) gives in alt 
only the linear equation 

0;; = f& (5.15) 

The essence of the contradiction between (5.14) and (5.15) consists 
in the fact that the former is quite general for the five dimensional 
curves E ij ’ f t) , in which all five deviators forming the “natural 
reference frame’” have been completely determined. Formulas (5.12) lose 
generality when applied to the case of E-dimensional curves (1 < 5) 
since, although in this connection there are only t deviators s .fa), 
we can, as a rule, construct from them yet another k deviators 

E.l 

(1 f k\(5), which are linearly independent of them and among themselves 
Therefore, from this fact that the curve E.. will be t-dimensional, it 
cannot at all follows that cr. .’ must also ci Z-dimensional, as occurs 
when (5.12) is adopted; the ikter can also belong to a subspace with a 
larger number of dimensions. 

If the curve fij ‘(t) is two-dimensional, then 

32 = 3$@ co.9 q~ + 3$@ sin fq, 3$’ = - .3p sin tfl + 34%’ COS (p (5.16) 

fp = cp @It Ip 08 = 0 

and the process of deformation is characterized by two deviators s .!“‘, 
3.tzot determining a “plane” in D Voreover, as is known from SeciZon 
3:‘the tensor structure of the relation between cr..’ and E. .’ will be 
dependent on the properties of these tensors and, ‘indeed, l$ a. (lo), 
3 .(.‘*) are coaxial, the relations in question are representabli’in the 
fc%m 

where oV I is a deviator linearly independent of E . .* and a. .‘, being a 
functioilof these two tensors, JJow it can be cons&ted hii been in- 
dicated in 2.2. Finally, if E. .’ and ii ’ do not have a common principal 
direction, then, as follows f:Arn 3.2, the tensor structure of the curve 
can be written down in the form 

o i; = ~~6ij + r~EI; + f,di~ + fg’iaiif8&; + f~~~~~*; + 

f f& f~&& + &&) i- If, @J&& -I- ~&&) + 

i f, r~,~~,~,; C Ei~~~;~88;) $5. 19) 
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'&US, to a "two-dimensional" curve of deformations can correspond 

either the two-dimensional (5.17), or the three-dimensional (5.18) or, 

in the general case, the five-dimensional (5.19) stress deviator curve. 

Special treatment must be given to those deformations during which 

one of the principal directions of E..' remains fixed as the tensor it- 

self varies. 'Ihis case is of interes;: because the investigation of the 

plastic behavior of materials is usually carried out on tubular speci- 

mens and fulfills the above-mentioned condition. 

In this case, the curve of deformations sij'(t) turns out to be 

three-dimensional, i.e. 

3;;“’ = f1$3pJ). -I- fiS3$@ + fi33.p 

32) = fi13i(jlo) + f2$3$@ + f&p (5.20) 

+a) = fs13$@ + fs23ij:20) + fs33p 

and the process of deformation is characterized by three deviators 
3.!10) ) ,.!ZO) and z+.!~') having a comnon principal direction. One of 

ti:m, as iis been shA& in 2.2, can always be expressed in terms of two 

others, so that only two of the deviators in (5.20) are unknowns. Apart 

from this, it follows from 2.2 that from three deviators having a common 

principal direction we cannot construct another deviator that is linearly 

independent. In view of this, the tensor structure of crij(t) in the pre- 

sent case can be expressed by formula (5.18), i.e. the stress deviator, 

as well as the strain deviator, turns out to be a three-dimensional 

tensor curve. 

'&US, the basic geometric properties of the stress-deformation rela- 

tions in initially isotropic, nonelastic bodies can be represented in a 

lucid manner. It is doubtful whether further progress in this direction 

will be of value, since geometric considerations alone are clearly in- 

sufficient for the solution of the problem under investigation. Only by 

means of an analysis of the phenomena arising during the irreversible 

deformation of a solid, and the creation of corresponding physical 

models can lead to the establishment of laws describing deformations of 

this type. In actual fact, this is exactly how progress is made in the 

modern theory of plasticity and its basic direction - the theory of flow. 
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