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The theory of tensors depending on one scalar argument can be called
the theory of tensor curves. Below, we will give an account of some of
the properties of such curves with a view to applying the results to
the problems of continuous media (in particular, to the question of the
relation between stresses and deformations in nonelastic solids). The
treatment will be confined to only three-dimensional symmetric tensors
of second order. For the sake of simplifying the formulas, the com-
ponents of the tensors are given in orthogonal Cartesian systems of co-
ordinates.

1. Three-dimensional, symmetric tensor of second degree
as an element of a six-dimensional space. Let us consider the
manifold of three-dimensional symmetric tensors of second order

TiuTyy Ths
T=(Ty) =Ty Toa Tos|» Tij=Ti (1.1)
T T3y T

It forms a six-dimensional, linear, metric space in which the scalar
product of its elements A and B is defined by the equation

(AB) = Ai;By; (1.2)

The norm is formed from the scalar product, i.e.

1A =V A4y (1.3)
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and the distance between the points is equal to

p (4B) = V(A"i;' - Bii) (45 — Bié) (1.4)

Apart from this, the elements of #, are subject to the condition

AuBy; -+ Budy; & Hy (1.5)

which follows from the rule for multiplication of tensors (and coincides
with the rule for multiplication of matrices).

If we did not have this last requirement, we could have enumerated
the components of an arbitrary tensor in any order, e.g.

Tyw=Ty Ty =T, Ty =_T3, V2T12 =T,
Vng =T, V2 Tys =T, (1.6)

and then treat the T, as components of a vector in a six-dimensional
Euclidean space. However, condition (1.5) excludes this possibility and
compels us to treat /I, as a special type of space (the space of sym-
metric tensors of second order}, the basic properties of which will be
dealt with in the first four sections of the paper.

That H, is six-dimensional follows from the fact that any three-
dimensional symmetric tensor of the second order can be represented in
the form (see, for example, [1])

8
Tij= 2} tom hif™ (1.7)
m=1

where hi(M) are six arbitrarily chosen, linearly independent, three-
dimensional tensors of the second order, and t  , are six invariant co-
efficients. We will call expression (1.7) the expansion of T,  in the
tensor basis hi§M), and t(n) the components of Tij along the tensors of
this basis.

The determination of t  , for given T, and hi(”) leads, in general,
to the solution of a system of six linear, algebraic equations with six
unknowns. However, this problem is greatly simplified if the basis
hi}m} is orthogonal, i.e. if

(m)y () _ — 1 (m=n)
B b = 8 = { g (1.8)

In this case the t  , can be determined directly from the formulas
tmy = Tijhz'§m) (1.9

It is obvious that any six symmetric, mutually orthogonal tensors of
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second degree are linearly independent, i.e. they form a basis. In fact,
by multiplying the expression

]
ST oy B = 0 (1.10)
m=1

scalarly by all the hi(m’ {consecutively), we obtain Xy = 0. It 1s
also clear that there 1s no non-zero tensor orthogonal to all the basic
tensors. This follows from (1.9), according to which all the components
of a tensor that is orthogonal to the basic tensors are zero. lence-
forth, we will assume that the basic tensors have been orthonormalized
(provided no mention is made to the contrary).

Let us consider, along with hi(“), another basis h;.(“), and repre-
sent its tensors in the form of an expansion in terms of the tensors of
the first basis (and vice versa)

(] 6
RE = S My B™, B =3 Ay B (1.11)

M=} m=]

From {1.8) and its analogous expression

R by ™ = bmn (1.12)
it follows that
] 3
E Mimiey Memy = Z Aemy Aen) = O (1.13)
k=1 k=1
i.e. the coefficients A, ., have the same properties as the cosines of

the angles between the axes of two mutually orthogonal Cartesian co-
ordinate systems in a six-dimensional Euclidean space.

Since
B 8= B = (hw) (1.14)

the expansion of a unit tensor in terms of tensors of an arbitrary
orthonormal basis has the form

8
dij= ) () hif™ (1.15)
M=
Multiplying this identity scalarly by ;s we find
L
) (hm)* =3 (1.16)

m=1
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This relation connects the linear invariants of the tensors of an
orthonormal basis and enables us to express one of them in terms of the
other five.

We raise the first of the identities (1.11) to the second power (in
the tensor sense). Then we will have

8 8
™ RGP = S Moy hmay k™ P (117)

p=1g=1

Summing (1.17) over all m and taking (1.13) into account, we obtain

6 6

SR B = S ki ™ R = Cy (1.18)
where C,. is a constant symmetric tensor of second order, equal for all
orthonormal tensor bases. In view of the isotropic nature of a three-
dimensional Fuclidean space (in it, there are no preferred directions),
the present tensor can be none other than isotropic, 1i.e.

Cy = C b (1.19)

By substituting (1.19) into (1.18) and contracting the indices 1, j
(on account of the fact that the basic tensors have been normed), we
find that the invariant coefficient is C = 2. Thus, finally

6
S k™ B = 28 (1.20)

m=1

Formulas (1.20) and (1.16) express the basic tensor and basic vector
properties of orthonormal temsor bases. By making use of them, it is
possible to express any one of the basic tensors in terms of the re-
maining five and the unit tensor Sij‘

In fact, let five orthonormal tensors hi§“) (m =1, 2, 3, 4, 5) be
prescribed., Then, by virtue of (1.20) one can write

by by =0y (1.21)
where hij = hij(69 is the required sixth basic tensor, and
]
@y =28;— SV ™ ™, Oiy=(®) =1 (1.22)
m=1

is a known vector. We raise identity (1.21) to the second power

highyph D, Py (1.23)

pqhqi =

and, in order to transform this, use can be made of the Hamilton-Cayley
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theorem, according to whiech (see, for example, [2, p.los]) (1.24)
highiphpghgy = (W [2 ()P — L(B) + LW 8;+ L 1(#) — (B°] by + 111+ (P hyehis
where

() = by (B = k=1, (1) = hyhyhy (1.25)

By substituting (1.24) into (1.23) and calculating (1.21), we find
{1.26)
() — 0] by = 3@, — % 11 + (0)2] ©;— () [& (W) — T + ()] 9,

Here we have introduced the first invariant h, = (h), which apart
from sign, can be determined from equation (1.16). Similarly, with
regard to the invariant (h3}; after multiplying (1.26) scalarly by sij'
we obtain the following expression in terms of known quantities:

3 1 1 1
%) = - Gy L@ — 3 + w2 — 5 o] (1.27)

By the same token, formula (1.26) can be regarded as the defipnition
{(to within the sign) of the tensor h j in terms of the five prescribed

orthonormal tensors h ;

An exceptional case arises when, in accordance with (1.16), it turns
out that (h) = 0. Then (1l.26) assumes the form

3
(1) by = 30,0, — - @, (4.28)

and one must argue somewhat differently.

By multiplying equations (1.21) and (1.28) together scalarly, we have
(B2 =3 (%) — + (®?) =3 [(®%) — }] (1.29)

In the particular case when h happens to be a deviator, by intro-
ducing the preceding expression for (h ) into (1.29), we are led to the
formula determining hzj in terms of the given tensors
O @y — 2y,

V@) — 1/,
It was proved in [3] that the invariants D D (Dz) and

leDk]DI (D ) of an arbitrary deviator D, j are subject to the in-
equality

b=+ V3 (1.30)

- (DY
SV Gy

Hence, since it follows from (1.26) that (9%) = 1/2 when (h) = 0, it
is possible to infer that

<1 (1.31)
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@) — >0 (1.32)

and, consequently, the radical occurring in (1.30) is always real. Thus,
the problem of finding the normalized tensor orthogonal to five ortho-
normalized tensors always has s solution.

2. On the snhsgaces in H,. Scarting from an arbitrary, ortho-
normal basis h 4% it is p0851bl@ to select two mutually orthogonal
subspaces H_ ané Hg ., from Ho. To the first will be assigned all tensors
representable in the form

2 3
%
TV = 3 ) hf® (2.1)
Ko
and to the second all tensors representable in the form

s
TP = 3 tof? by (2.2)
Femnba
The tensors h; {m} {m<n} form an orthonormal basis in H , and the
tensors h; (“) (m;;:n + 1) form an orthonormal basis in f, .

The transformatlon of one of the orthonormal bases into the other in
H, and H,  can be effected by the formulas

k73 8
v hd &
éi‘%{m}‘—‘: E :;&ﬂ(} kék}, }Lig‘{m} — E 3‘.{{2} é%’ 2.3
Fome), K=epeds1
where the coefficients h( By K(Q) are subject to the equalities

2
A Wy @ W W
S At Mg’ = 2 Mgy Mgy = Opq

e k=1 (2.8
S @, @ w g @ @
St hoky Mgy = D) M) Mkay = B

k=n-41 Rssepiob),

Of course, it is possible to divide H, into a larger number of
matually erthagsna} subspaces. Hsreover; an arbitrary element of H, can
be represented in the form of a sum of elements belonging to mutua}}y
orthogonal subspaces, all of which are six-dimensional. Let us examine
the properties of certain subspaces.

2.1. The deviatoric subspace D,. We choose the coefficients A, of
the transformation in (1.11} as

Mgm = ;,l,-é- (Bum) (2.5)
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Then, according to (1.15) and (1.16)
B O = by = <8y — 04 2.0

i.e. the sixth tensor of the basis h V(M) will be the normalized, iso-
tropic tensor

8:i 8, F =1, 84 =V13 @2.7)

The remaining five tenmsors d, (m) “ftv(m) (m=1, 2, 3, 4, 5), in
view of the conditions

7 ﬁ * l l
ij(m) ( ) (m) 6” (m) — 0
turn out to be deviators.

By making use of the tensors d. §M) ;» 1t is possible to split H
into two mutually orthogonal subspaces tﬁe one-dimensional one 81( )¢
(the space of isotropic tensors) and the five-dimensional one D, all
the tensors of which are deviators.

Hence, it follows that an arbitrary deviator can be represented in
the form

5
Di; = > Dim di™ (2.8)
m=1

where d.!™ are five orthonormal deviators. The six-dimensional basis
Sij(‘)' di§M) is subject to condition (1.20) and, consequently

b

S di™ & = 5 85 (2.9)

m=1

This formula allows us to express any one of the five orthonormal

deviators (for example, &i(5) = div) in terms of the other four and §
The corresponding calculations have already been given at the end of
the preceding section. They lead to formula (1.30), in which, for the
present case, mij must be understood to mean

i

4
i =585 — 3} dil™ dif™ (2.10)
m==]
It should be emphasized that the five-dimensional space 05 of de~

viators has nothing in common with the five-dimensional vector space
considered in the works {4,5] and others,

In the cited works on the Cartesian axes of a five-dimensional space
certain linear combinations of the components of tensors in a Cartesian
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system of coordinates of a three-dimensional space were set aside. These
linear combinations can then be interpreted as the components of five-
dimensional vectors. However, the latter leads to the fact that the
operations in a five-dimensional space lose invariant character and, as
a rule, have meaning only when definite systems of coordinates are
simultaneously fixed in both the three- and five-dimensional spaces. The
latter is also obvious from the formulation of Theorem 1 in [4]. For de-
tails, see [6-9].

2.2. The subspace of deviators having a common principal direction.
Tensors Q. & H, are called axisymmetric, if two of their principal
values are equal. If such a tensor is fully determined by only one of
its principal directions, this will be called its axis.

If a normal deviator is axisymmetric, it will be subject to the con-
dition

Q=1 V6 [Qik Qi — % 61'5] (2.11)

where the upper sign relates to the case when Qij is a deviator of the
tensile type, and the lower sign when Qij is a compressive type. Formula
(2.11) can be verified by carrying it over to the principal axes of Qij
and taking into consideration that

Q=+ ]/%‘, Qy = Qg =F 717— (2.12)

Henceforth, for the sake of definiteness, the symbol Q. will denote
a normalized deviator of the compressive type. It follows from (2.11)
that for such deviators

(%) = Qi Q5 Qi (2.13)

= 1
Ve
If ¢;; is an arbitrary normalized deviator, it can be connected with
Q, ., the axis of which coincides with one of the principal directions
of ijr by the formula

1
Qi = Vi — [ccii + cix O — 5 O ] (2.14)

where ¢ is the principal value of ¢, . corresponding to the axis of Qij’
Equation (2.14) can be verified by referring it to the principal axes

of €t

It follows from (2.14) that, if two normed deviators ciﬁl) and ci(
have one common principal direction, the following relation will sub-
sist between them:

2)
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1 W . . m, 1 1 (2) (2) (@ 1
TE—, [Clcij T Gk Ckj — ?51':'] = ;;r—_%[CzCij + Cik Ckj — 5 51,-]
(2.15)

where ¢, and c, are the principal values of ci(l 2)

; ) and Ci} correspond-
ing to their common principal direction.

We will elucidate the conditions of orthonormality of the deviators

ci(l) and ci(z). The table of direction cosines between their principal
axes has the form:
‘ l @ ‘ & |03(2) =
Here, y,, is the angle between the
principal axes cil) and ciZ). Hence, al | coste | sintam ' 0
the components of the tensor ci(Z) in
the principal axes of ci(Z) can be ex- o® ‘-—sule\ COS T12 0
ressed by the formulas
P Y av=c| 0 | o | 1
2) .
o = ¢, cos? 74, + ¢ sin?yy, (2.16)
. 2
¢ ® = ¢, sin? vy, + c® cosPyy, (2.17)

(2) ___ (2 _
€3 = C3 = Cy

By subjecting (2.17) to the requirement ci§l) ci§2) = 0, we are led
to the formula

_ el 4 o)
c0s 2y = —awty  (on =V 37,_—(—,) (2.18)

If ci}l) and ci§2) are normalized, then

LY - ¢
y=— VY3 = — V3 -t 2.19
* V2—3 (cs(k))z ]/2_3ck2 ( )

As is obvious from (2.18), there is an infinity of normalized de-
viators ci(Z) which have the one principal direction in common with the
given normalized deviator ci(l) and which are orthogonal to it. We will
consider an arbitrary pair o% such tensors and try to select yet another
normalized deviator, which is orthogonal to them and has with them a
common principal direction. Then, besides (2.18) we will also have two
analogous equations

C0S 2713 = — 003, COS 2753 = — Cipllg (Y23 = T12 — Tn3) (2.20)

By making use of (2.18) and (2.20), we obtain

alzazz + a12a32 + 0622@32 = 1_2 alzagzasz (2.21)
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Hence

_ 1 — a12a22
a3 - i ]/.alz + (122 _'_ 2a12a22 (2.22)

From (2.18) and (2.19), it follows that a change of sign in front of
@, 1s equivalent to a change of sign in front of ci(s). By the same
token, it turns out that to each pair of orthonormal deviators ci(l),
Ci§2) having a common principal direction there corresponds a unique
(to within sign) deviator ci(3) which is orthogonal to them both. From
the account, it also follows that in an arbitrary deviatoric basis di(“l

no more than three of its tensors can have a common principal direction.

Concerning the manifold Ds(') of deviators having a common principal
direction with Qi§'), the following statements are valid:

a) an arbitrary linear combination of such deviators ¢y & Dy,

b) any four deviators, having a common principal direction are

linearly dependent,

c) an arbitrary ci; € D,* is representable in the form

3
= com cis" (2.23)
M=
where ci;“) are three orthonormal deviators from D,*,

d) from (a), (b) and (c) it follows that each manifold D;* is a
three-dimensional subspace of D, in H,

e) to every axisymmetric deviator Qij a certain D,* can be associated,

f) to 1ts elements will belong all deviators having a common principal
axis which coincides with the axis™of Q*ij(Q*),

g) an arbitrary symmetric tensor of second order is formed by means
of some linear combination of the elements of D.;*, since, for example

1), a 1 2 2) , (1) 1,1, (2 (23 , (1), (1)
e o, el el it i e el Crp oty o o o (2.24)

has principal direction coinciding with that of Q*.

The transformation of one orthonormal basis ci§“) into another
¢ .{™ is accomplished by means of the formula

L)

3 3 3
™ = 3 Ay i (3 At A = 3] Aim htm = Bon)  (2:25)

n=1 k=1 k=1

From (2.25), it follows that
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3 3
2 e ey = 2 e ™ e ™ = Ay (2.26)
M=t ma=1

where A, . is a tensor, which remains invariant under arbitrary trans-
formations (2.25) into the corresponding D,*.

By means of elementary calculations it is possible to establish that
every shear deviator S;; (i.e. a tensor with the principal values
S, =-8,, S; = 0) is orthogonal to an axisymmetric tenmsor Q,., if the
axis of the latter is perpendicular to the plane of shear. On” the other
hand, by virtue of (2.18), two shear deviators Si(l), Si(z) (with the
same shear plane) are orthogonal, if the angle between tﬁeir principal
directions y;, = w/4. Hence, the simplest class of orthogonal deviators,
having a principal direction in common with Q*, is Q. .* and two mutually
orthogonal deviators of the shear type Si;l), Si(z) the plane of shear
of which is perpendicular to Q*. By making use o% this most simple basis,
it is possible to determine Aij'

In this respect it should be noted that, according to (2.14)

S Sk(jl) *—% 0 = S Sk(jm — %— 8= — -;_6_. Qf (2.27)
By setting in (2.27)
e = Q% o =8, & =8P (2.28)
we find
1 *
Aij = 8;— = S (2.29)
We represent Q& in the form of an expansion in terms of the basic
deviators ci(“)
]
3
Q= 3 Qm o™, Qumy = O & ™ (2.30)
m=1

However, in agreement with (2.14)
- 1
V6 Qury = TRy lem + (cm)] (2.31)

On the basis of the Hamilton-Cayley theorem

e = =+ Cm + % (cm) (2.32)

Hence

Qumy = V2 m (2.33)
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By the same token

3
94]‘ == l/.g.. Z Cm Cigm) (2.34)
m=1
A consequence of the present formula is the equation
3
m=1

By substituting (2.34) into (2.29), and then {(2.29) into (2.26), we
obtain the equation

3
> [k o™ + Femed™] = 8y (2.36)

m==]

connecting the three orthonormal deviators having a common principal

direction. This equation (together with (2.35)) enables us to express
one of these deviators in terms of the two others and 5ij (to within

the sign).

However, we will not dwell on this, in as far as the analogous ex-
pressions were proved in Section 1.

2.3. Subspace of coaxial deviators. If two deviators a,., bij
axial, then, as is well known, they are comnnected by the equation

are co-

bij = Ay + Az[aik ax — L (a3 (2.37)

where A, A, are scalar coefficients which can be expressed in terms of

the invariants of the deviators of ;s bij (see, for example, [3]).

By taking into account that a,; and bij are normalized and mutually
orthogonal, we obtain

b;; = i[m 1 ai; — Vbsec v (amar; — %&5)] (2.38)
where
siny =V6(a*) =V Banajay (2.39)

We note that inequality (1.32) is valid for an arbitrary deviator
and, consequently, for a normalized deviator

—1<VB(@) <! (2.40)

By the same token, to every normalized deviator a;; there corresponds
a unique (to within sign), coaxial, normal, normalizeé deviator bij' An
exception case arises when
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siny = +1, (@® = + (2.41)

L
Vs

In addition, a;; can turn out to be an axisymmetric deviator and be
subject to equality (2.11), in view of which the right-hand side of
(2.33) becomes indeterminate of the form 0/0. This indeterminacy cannot
be removed. The fact is that in this case there is an infinity of
deviators coaxial with and orthogonal to a;;

They will all be deviators of the shearing type in which the shear
plane is perpendicular to the axis of a;; (see 2.2). However, an arbi-
trary pair of such deviators will not be coaxial to each other. There-
fore, even though in the present case there is freedom of choice of the
normalized deviator coaxial and normal to a;;, the assertion that there
are no third mutually orthogonal, normalized, coaxial deviators however
remains in force.

With respect to the set D,* of coaxial deviators we have the follow-
ing assertions:

1) An arbitrary linear combination of such vectors Aij € D,*.

2) An arbitrary multiplicative tensor, which has been formed from
such deviators, is a coaxial element of D,*.

3) Each D,* is a two-dimensional subspace in H, and D, and the pre-
sent D,* belongs to such a subspace in an arbitrary D;*, in which Q*
corresponds to one of the principal directions of the deviators.

3. On the number of tensors sufficient for the formulatien
of a basis in H,. A basis in H; consists of six linearly independent,
symmetric tensors of second degree. However, a nonlinear dependence be-
tween the base tensors is not excluded. In this connection, the question
arises as to the smallest number of tensors sufficient for the formation
of the basis. In passing, we will also touch on the question of the
formation of temsor bases from vectors.

3.1. Dyadic bases. We will consider the set A of three-dimensional
symmetric tensors of second order, having the form

gi; = 9:i€; + 3; € (3.1)

where 9;, and e; are two arbitrary three-dimensional vectors. The in-
variants gij can be expressed in terms of the invariant vectors 3;, and

e, in the following manner:

gii = (g) = 23e COS (P, g‘ij gﬁ — (gz) — 29282 (1 + 0052 (p) (3.2}
gix 8ri 8i; = (8%) = 25%% (3 + cos® g) cos @
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where

—_— ——— P
3= V5 a, e= Ve e, cosq= — (3.3)
From (3.2) it follows that in the form (3.1) only such symmetric
tensors of second order can be represented, in which the invariants are
subject to the relation

2 (g% = () 13 (g% — (g)*] (3.4)

By setting here (g) = 0, we obtain (g3) =0, i1.e. from the whole set
of deviators, it is only the tensors of the shear type that can be re-
presented in the given form (3.1). Isotropic tensors cannot be expressed
in the form (3.1).

The set A, being a particular set of elements occurring in the space
Hg, is not one of its subspaces because gi§l) + éi§2) is not an element
of A in general.

By taking three mutually orthogonal unit vectors a1, a®, »®, it
is possible to form from them six symmetric temsors of second order

1
gim = 8iMaym), g (B = 7= [2:P)a;@ 4 5;(@3,(P)] (3.5

where m, p, q assume the values 1, 2, 3, and alsom # p ¥ 1.

Dy referring the tensors (3.5) to axes with the directions of a(,
52 and 3®, it is easily established that

g8y = 8y (3-6)

i.e. the tensors (3.5) form an orthonormal dyadic basis in f,. The com-
ponents of an arbitrary T & H with respect to the tensors of such a
basis are equal to

t(m) = Tmm? 33+m = VEqu (3.?)

where T, . are components of the tensor T in Cartesian coordinates, the
axes of which coincide with 8 , 3@ and a® ., If a(™ are not ortho-
gonal, then we lose the mutual orthogonality of gi(k) in (3.5). Never-
theless, in this case also they remain linearly inéependent {under the
condition that 3™ are not coplanar) and can be used as six basic

tensors.,

In [1], tensors of arbitrary order are successively represented in
the form of expansions in multiplicative tensors which have been formed
from the basic vectors (in particular, in dyads if attention is directed
to second order tensors), and also use is made of both orthogonal and
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nonorthogonal bases. This representation is very convenient for differ-
entiated tensors referred to a fixed system of coordinates,

3.2. Bases formed from multiplicative tensors of the second order.
It is obvious that it is impossible to construct a basis in H, having
in all only one symmetric tensor @ Of course, from this tensor it is
possible to construct a unique, symmetric tensor a,,a,., which is
generally linearly independent of it. Every other multiplicative tensor,
as, for example, T %pPpis ik%hpPpglejr v in view of the Hamilton-
Cayley formula, can be expressed in terms of 8,5 @ir Gy There-
fore, the number of tensors sufficient for the %ormation of a basis can-
not be more than two.

We will elucidate the sufficiency of this number.

Let a;., b, be two linearly independent temsors. It is possible to
construct from them the following six symmetric tensors:

QikQyjy bikbkj: aikbkj -t bikak]" lli'kakpbpj + bikakpapj (3 8)
bikbhpa'pj + aikbkpbm', aikakpb:oqbqi + bihbkpapqaq

All other multiplicative, symmetric tensors of the second order will
be expressible in terms of the nine tensors &, ., a; b;; and (3.8) on
the basis of the Hamilton-Cayley theorem generalized to the case of two
tensors [10]. And what is more, it is possible to assert that between
the above-mentioned nine tensors there are always n linear relationms,

where n 1s not less than 3 because the above nine tensors are elements

of Hg.

Tt is clear that when n » 3 it is not possible to form a basis from
these nine tensors, because among them there would not be six linearly
independent ones. It is not difficult to quote examples corresponding
to this case. In particular, if a;; and b, have a common principal
direction Q*, then all symmetric tensors formed from them will have this
very same principal direction. They will belong to the four-dimensional
subspace D;*, &, ., and, consequently, each five of them will be linearly
dependent (Section 2}.

Dy the same token, even if one of the principal directions of a;;
and bij should coincide, we cannot construct a tensor basis from them.
And what 1is more, this is impossible even if three such tensors are
given. If, however, a;. and b.. do not have a common principal direc-
tion, then, as was proved in til], the coefficients in the expression

Ty; = agdi; + ogas; + ogby; + agtinar; -+ ogbuby; +
+ a5 (@irbe; + bixar;) + g (@rarphbp; + binrpap;) +
+ o7 (Bibkpap; + Qucbrpbyp;) (3.9)
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can all be chosen so as to satisfy equation (3.9) for an arbitrary
tensor Tij'

The last statement is equivalent to the assertion that, in the case
considered, among the nine tensors §; (3.8) there are six
linearly independent ones, from whlch can ée formed a basis in H.

From the foregoing we draw the two conclusions:

1) For the construction of a basis in Hy it is sufficient to have

three three-dimensional vectors, provided they are not coplanar.

2) For the construction of a basis in Hg it is sufficient to have two

three-dimensional symmetric tensors of second order, provided they do
not have a common principal direction.

4. Generalization of Serret-Frenet formulas. We will con-
sider the tensor R . & H which is a function of the single scalar
parameter A.

The derivative

dRy;
i
o T T

will not be a normalized tensor in general. However, if we change over

to the new argument
A [—
dRy; dRy;
s = S ‘/ i —H d, (4.2)

(4.1)

then the tensor

i {
e e p (1) {4£.3)
will prove to be normalized.

We will call argument s chosen in the above manner the length of the
tensor curve R, ., and rigl) will denote the normalized tangent tensor
to it. Now we form the following sequence of recurrence relations:

dr dr 2
Yo 2) Mo e 1) @
as = KTy ds LA e
d ri(a) dr ()
LS 2 4 DL RS- (k-1) (k+1) . .
o = xzré) 4 mﬁr% oo, A Ky T 4w 0 (4.4)

In each of these there appears one tensor and one scalar coefficient
that were not in the preceding formulas. By the same token, formulas

(4.4) will determine the tensors rl§k) (k>2) in terms of the tensor
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) prescribed by formula (4.3).

As far as the scalar coefficients x, are concerned, they will be
chosen so that all the successive tensors are normalized. In this con-
nection, we will prove that

ri(jM)ri(jn) S 6mn (4'5)

i.e. that ri§“) are not only normalized but also mutually orthogonal.

In fact, by multiplying the first of formulas (4.4) scalarly by

rl;l), we obtain
dr; (1)
r; (1) ds = (r Qp (U) =0 = xlrigl)rigﬂ (4.6)
Hence, if x; # 0, we have
rﬁUrkm =0 (4.7)

Now we multiply the second of formulas (4.4) scalarly by r, ), and
also by r; (2) Then we will have

d" (2) d rig‘l)
Y e 1 2)y 2) il e e 1 3
r g =@ ) — P g = — = = b ke Or ) (4.8)
dr (2) 1 d
2(32) ds = (r @)y (2)) = (J = x r. (2)r (3) (4-9)

Hence, if x, # 0, we have
riorl = r@r® =0 (4.10)

Dy completely analogous arguments, we are led to the conclusion that
all the tensors in (4.4) are mutually orthogonal. But then the given
sequence of formulas cannot be continued indefinitely; from the fact
that there are no more than six mutually orthogonal, symmetric tensors
of the second order, it follows that the sequence must terminate not
later than the sixth formula, i.e. kx, = 0 (although, in certain cases,
it can terminate earlier).

Thus, for an arbitrary tensor curve in H¢, we have the following
relations:

(4.11)
dar. ) dr® dar.(8)
Yoo (@ i S (1) ()] ! = — (2) p(2)
s LRA —7s LR -+ LR PN ~a5 AT - LA ;
dr{® ar® ar®
— . = 3 5 ] = 4 (] __H_.== — 5)
2 = — %P, s w TP+ ®, —; AT

which constitute a generalization of the Serret-Frenet formulas. They
permit the determination, for each tensor curve Rij(s)’ of a natural
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reference frame riQM), i.e. the set of six orthonormal tensors at each
point of the curve,

If the parameters

Ry = % () (m=1,2,3,4,5) (4.12)

of a curvilinear tensor curve are prescribed, then (4.11) becomes a
system of six linear, ordinary differential equations, the unknowns in
which are the tensors ri§“’. Their general solution can be written down
in the form

6
T igm) = 2 Ci(in)f (mn) (4.13)
na==]
where Ci(") are six constant tensors playing the role of constants of
integration, and the thirty six scalar functions f . of the s argument
are arbitrarily chosen in the form of a particular solution of the
following six systems of equations:

df f om)
d(;m = Hafemy g = — Hafam + %afim
g U an)
;sn):: — %af(an) + %s/ian), ds %3fian) + %af(sm) (4.14)
dfs dfwn)
d(sn) = — %afun) + %o/ en)s 2 = — %slwn)

If the particular solutions f ., of system (4.14) are chosen so as
to satisfy the initial conditions

f(mn) == 6mn when s = 0 (4.15)
then it turns out that
CM = ri" (0) (4.16)

By the same token, when the f . are chosen as above, the tensor
constants Ci(“) will form an orthogonal basis coinciding with the
"natural reference frame" of the tensor curve at the point s = 0.
Formulas (4.13) in the present case can be treated as the transforma-
tion of this constant basis into the "natural reference frame", formed
at an arbitrary point s.

In agreement with the above choice of initial values for f, ., we
have

8 8
D) Fomi iy = 23 Fotemy Framy = 8, (4.17)
K==]

k=1
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As has already been mentioned, sequence (4.4) can terminate before
the sixth formula.

For example, if R, .(s) is a deviator, all the riQM) will also be
deviators. Then sequence (4.4) must terminate no later than at the fifth
formula, becuase there are no more than five orthonormal deviations
(Section 2). Thus, for deviator curves (which will be of greatest im-
portance later on) we always have x, = 0, i.e. they are a particular
form of five-dimensional tensor curves belonging to the subspace D,. If
R, .(s) is not only a deviator but also retains one of the principal
directions Q* when it otherwise varies, then sequence (4.4) must termi-
nate at the third fornula (i.e. kx; = 0). This follows from the fact that
there are no more than three orthonormal deviators having a common
principal direction (Section 2). Consequently, tensor curves of this
class will be particular forms of three-dimensional tensor curves. If
all three principal directions of the deviator R, (s) remain fixed
during the variation of the deviator Rij(s), then (4.4) terminates at
the second formula, since there are no more than two coaxial, ortho-
normal deviators. In this case kK, =0, and R; (s) will be a particular
form of "plane" (two-dimensional) tensor curves.

The resemblance of the theory of tensor curves to the theory of
vector curves is obvious. However, there are also some differences be-
tween these theories. For example, the Serret-Frenet formulas for three-
dimensional vector curves in the general case do not have a general
integral, whereas equations (4.11) are always amenable to quadrature.
Their general integral is expressed by

8
2 Timrm = A, = const (4.18)
m=1
which can be obta1ned bY tensor multiplication of equations (4.11) by
ri§1), ri§2), cees , respectively, and by then summing all the
equations. The nece531ty of the existence of the integral (4.18) is a
consequence of (1.20).

5. Some applications to the question of the connection
between stresses and deformations in nonelastic solids. In
physics, problems often arise in connection with the establishment of
relations between vector or tensor curves. The classical example is
Newton's second law of mechanics, which can be treated as an isotropic
connection between the vector curve r(t) {(the trajectory of a material
point) and another vector curve F(t) (the force).

The form of laws of this type is always subject to limitations of a
geometric character, which are called forth by the finite dimension-
ality of the space. Thus, for example, independent of any sort of
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physical considerations, it is possible to assert that the force vector
is representable in the form

F = Fl'ﬂ "“]"‘ ﬁ'av “‘i“' Fs$ (5.i)

where 1, ¥ and B are the mnit vectorg of the tangent, the normal and
the bivormal to the trajectory, and F,, F, and F, are the projections
of the force onto them.

Expression (5.1) can be transformed into the form

w~£(5'w-ﬁ mmiL—~}énuwm§£—w§wwﬁ Txr 5.2
¥y ! 2;’ w— 22 %V:ﬁ*——?}a {' gs}*wﬁmé"‘ 52

where

v=Vror, w=Vrr

The necessity that the right-hand side of (5.2) remains invariant
when T is changed into

K= 2.3}

where v, is a constant vector, i.e, by assuming the existence of in-
variant reference frames, we find that

F = fr (5.4

where f is an invariant which, in view of the adopted assumption, cean
be a function of any invariants of the derivatives af vector ¥, apart
from those containing ¥. If in addition it is demanded that the integral

# ™

§&&:g

a Fa

2
g&@mggﬁgﬁ (5.5)
Fa

should depend only on the values of the invariants of the motion at
points ry and ry, then it turns out that f = m = const, and (5.4) be-~
comes the well known formulation of the second law of mechanics. Then,
{5.5} turns out to be the integral of the kinetic energy.

The shove reasoning has two aspeets! one is goomefrical, the other
physical, The first confines the search for possible forms of the rela-
tion between the vectors r and F to the trinomial formula (5.2), which
thershy pgeludes from consideration all time derivatives of vector r of
order greater thap the second. The second aspeot introduces Iwos hwpo-
theses, hased on experience. which lead to the significsnt simplifics-
tien of (H.2).
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From this example it is clear that the role of the geometrical con-
siderations in establishing the connection between vector curves (and,
consequently, between tensor curves) is not to be exaggerated. A de~
cisive role is obviously played by the considerations based on an
analysis of the physics of the phenomena under consideration.

Nevertheless, certain benefit cap also be derived from a preliminary
investigation of the geometrical aspect of the problem.

We will consider the connection between the stress tensor o, . and
the strain tensor €;; in a nonelastic solid, i.e. basically the
question of the formulation of the constitutive equations for such
solids. In contrast to the elastic body, in the present case there is
no single-valued relation between o, . and €. at each instant of time ¢.
However (if the temperature distribution of the process of deformation
is fixed by assuming, for example, that it is isotropic) it is possible
to assert that the tensor curve o,.(t) uniquely determines the tensor
curve elj(t) In this connection, 1t will be assumed that at the initial
instant 0 the body is undeformed (e,.(0) = 0) and free from stress
(a (0) = 0). Moreover, we will consxder the body to be initially iso-
troplc, by assuming that in the constitutive equations of the material
there appear no other tensors than o, e.. and their time derivatives.

iy T
We will represent & and % in the form
g = + 6513 = Egy; -+ 2—66{5
0 =047 L6y = Ssy; +5 L 68y (5.6)
e=¢g, o=o4 E=Veerl §=Vsg, (5.7

where e;e and a;. are the deviators of the stress and strain tensors,
and the normalized tensors 3;; and s;; are determined by the formulas

£.: Gss
By = ;3 ' Sij == “;i (5.8
Expressions (5.6) represent the tensor curves € (t) and o, (t) in
terms of their projections on the Cartesian space bl and the 0ne~
dimensional space §,.. Let the quantities a,.(¢) = 2.t (¢), E(¢) and

e{t) be prescribed, whlch by virtue of (5. 65 and (5 %), is equivalent
to prescribing E:](t)'

By following the preceding section, we can write

3 (1) = (2 202} = - )] {3)

95 %23, 3 %20 + %,3,{

; 8 = — {2} [ ; ) == — {3 5

3, %348 4 %28, 3 f %9, + %9, (5.9
5.8 = — @

9, %91
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where 9i(“) are five deviators which form an orthonormal basis in Ds
and are a "natural reference frame" for the tensor curve

t
Ri; (t) = &31.](1) dt (5.10)
(1]

We will represent the stress deviator c;j in the form of an expansion
in the given reference frame

(m)"ij

85
6= 2 SpuPim (5.11)
mi==1

Since the body is regarded as initially isotropic, the coefficients
in this expansion must be functions (or functionals) only of the in-
variants of the tensors & and 9i; and of their time derivatives.

The deviator 9i(“) can be expressed in terms of &} and the first of
its four time derivatives. Therefore, (5.11) can be brought into the
form

(5.12)

:S f@m

M=l dtm
where f(&), as also S(m) are functions (or functionals) of the in-

variants of the tensors T Eij and their derivatives,

Such, on the face of it, is the most general form of the relations
between the stresses and deformations in an initially isotropic body.
However, it is easy to quote examples which indicate the insufficient
generality of (5.12). We will now consider the case of the one-dimen-
sional deformation

91 = 59 = const, si; = E{t) 5[ (5.13)

This simplest deformation is characterized by a single deviator
35(0). However, from it we can in general construct yet another linearly
independent deviator

0)g 10) — 1
94§93 /a8

Therefore, the tensor structure of the stress-deformation relations
in the present case must have the form

- 0)g (0) . 1 1

g, = Fo® 4+ F, ERERY /q 6”.] fe; + 1, lege,; — /aEzﬁij] (5.14)

where f, and f, depend on the invariants € €, their time derivatives

and the third invariant of the deviator & i
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On the other hand, for this same case expression (5.12) gives in all

only the linear equation
0; = he; 6.15)

The essence of the contradiction between (5.14) and (5.15) consists
in the fact that the former is quite general for the five dimensional
curves £ ."(t), in which all five deviators forming the "natural
reference” frame" have been completely determined. Formulas (5.12) lose
generality when appiied to the case of I[-dimensional curves {l < 5)
since, although in this connection there are only ! deviators a, {m),
we can, as a rule, construct from them yet another k deviators
(I + k<(5), which are linearly independent of them and among themselves
Therefore, from this fact that the curve €;; will be l-dimensional, it
cannot at all follows that ai.' must also be l-dimensional, as occurs
when (5.12) is adopted; the latter can also belong to a subspace with a
larger number of dimensions.

If the curve eij'(t) is two-dimensional, then

31 = 509 cos ¢ -+ 5™ sin g, 98 = — 5[0sing + 9 cos ¢ (5.16)
=90, ¢®=0

and the process of deformation is characterized by two deviators 7, (10,
a; (20) determining a "plane" in D,. Moreover, as is known from Section
3 the tensor structure of the relation between o, " and e,." will be
dependent on the properties of these tensors and, 1ndeed, 1% 9, (10),
5.(20) are coaxial, the relations in question are representable in the

iJ
form

= f&g + 1 (88— VsE%,) (5.17)

If 9i§ls)»3i§26} have a common principal direction, then

o) = 1.8 + fé + 10, (5.18)

3 33

#

where @, . is a deviator linearly independent of &,." and €,.’, being a
function of these two tensors. How it can be constructed has been in-
dicated in 2.2. Finally, if e,." and &,." do not have a common principal
direction, then, as follows from 3.2, tﬁe tensor structure of the curve
can be written down in the form

ctxfgﬁif+f112+f23 +f31kk3+f4tftk]
+i(u‘ik} zkk;}+f (adc kpp3+8@kkp?3}+
+ 1, {sikskﬁs s}ke? o p}} (5.19)
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Thus, to a "two-dimensional™ curve of deformations can correspond
either the two-dimensional (5.17), or the three-dimensional (5.18) or,
in the general case, the five-dimensional (5.19) stress deviator curve.

Special treatment must be given to those deformations during which
one of the principal directions of e, .’ remains fixed as the tensor it-
self varies. This case i1s of interest, because the investigation of the
plastic behavior of materials is usually carried out on tubular speci-
mens and fulfills the above-mentioned condition.

In this case, the curve of deformations eij'(t) turns out to be
three-dimensional, i.e,

1} o= {10) (20} (30
3 F250 4 £,280 4 11950
- 20 3

3i§2) = fﬂaigm) —+ 'fzzai(j ) -+ f233i§ 0} (5.20)

3) o (10) (20) (30)
31'(7‘) f 0%ij +f 32‘9'11' +/ 33‘91'1‘

and the process of deformation is characterized by three deviators
5,410), 9i(20) and ai{3°) having a common principal direction. One of
them, as has been shown in 2.2, can always be expressed in terms of two
others, so that only two of the deviators in (5.20) are unknowns. Apart
from this, it follows from 2.2 that from three deviators having a common
principal direction we cannot construct another deviator that is linearly
independent. In view of this, the tensor structure of o, .(t) in the pre-
sent case can be expressed by formula (5.18}, i.e. the stress deviator,
as well as the strain deviator, turns out to be a three-dimensional

tensor curve,

Thus, the basic geometric properties of the stress-deformation rela-
tions in initially isotropic, nonelastic bodies can be represented in a
lucid manner. It is doubtful whether further progress in this direction
will be of value, since geometric considerations alone are clearly in-
sufficient for the solution of the problem under investigation. Only by
means of an analysis of the phenomena arising during the irreversible
deformation of a solid, and the creation of corresponding physical
models can lead to the establishment of laws describing deformations of
this type. In actual fact, this is exactly how progress is made in the
modern theory of plasticity and its basic direction - the theory of flow.
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